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Abstract

Social media platforms have grown rapidly in recent years, with billions of people
worldwide using them for communication, entertainment, and information. Social
media development has dramatically impacted society, affecting how people inter-
act, communicate, and consume information. While social media has numerous ad-
vantages, it has also prompted worries about privacy, misinformation, and the influ-
ence on mental health, especially among young people. The dissemination of rumors
has been significantly impacted by social media platforms. The major platform that
has been used for spreading news regarding the Covid-19 pandemic is Twitter. The
Covid-19 pandemic has spread a considerable deal of false material on social media.
Artificial intelligence proposed several methods to relieve the spread of fake news.

In this study, we proposed a model that can discriminate between “fake” and
“true” news tweets capable of working with any up-to-date problem. To address
this issue, this research explored various learning approaches to detect fake news. We
compare different deep learning and machine learning methods for fake news detec-
tion, such as CNN, LSTM, Naı̈ve Bayes, and Support Vector Machine. The efficiency
of these models was evaluated on benchmark datasets and self-collected dataset. This
research aims to improve the model used in classifying rumors by utilizing various
techniques for text representation such as Word Embedding and TF-IDF. It involves
extracting the underlying meanings in texts by searching for semantic relationships
between words, phrases, and texts. These processes help in analyzing and under-
standing texts. The efficiency of these models was tested by training data on a set of
tweets. New tweets were collected using Snscrape to track different writing methods
and build a model capable of detecting errors with all the changes that occur in a word
and returning to the origin of the word.
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The results of the first model using TF-IDF algorithms and machine learning al-
gorithms showed the superiority of Multi-Layer Perceptron algorithm, achieving an
accuracy of 93.8% and an F-score of 93.6% when applied to the English language. The
results of the Arabic language models showed the superiority of the Support Vector
Machine algorithm, achieving an accuracy of 82.90%, while the K-Nearest Neighbor
achieved better results with an F-score of 57.5%. The results showed the superior-
ity of Uni-gram text vectorization over Bi-gram. GloVe word embedding was used
with deep learning algorithms to improve text understanding and discover relation-
ships between words. Recurrent neural networks achieved the best results for the
English language with an accuracy of 99%, but the ensemble learning model achieved
better results in terms of F-score achieved 97%. The Convolutional Neural Network
achieved the best results with the Arabic language achieved an accuracy of 83% us-
ing the Accuracy measure, while the Ensemble learning model achieved better results
using the F-score at a rate of 81.7%.

The second step was to test the model on a new test set that had not been tested
before. A significant decline of about 25% was found in the English language model,
achieving an accuracy of 74%. The experiments showed that adding some modifica-
tions to the evidence processing stage to develop the model made it capable of dealing
with all the changes that occur in a word and showed an improvement of about 8%
achieving an accuracy of 83%. As for the proposed model for the Arabic language,
there was a decline of about 5%, achieving an accuracy of 70%. The results vary be-
tween deep learning models, but the BI-LSTM showed the difference between the
differences in the data. With some modifications to the word processing stage to de-
velop the model and make it capable of dealing with all the changes that occur in a
word, there was an improvement of about 8% achieving an accuracy of 78%.
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